Los músculos son los encargados de producir los movimientos del cuerpo. Además de facilitar los movimientos de unas partes del cuerpo respecto a otras, los músculos permiten otro tipo de movimientos, como los movimientos involuntarios del intestino (peristálticos) y producen calor (a base de consumir energía).
Constituido por células con capacidad de contracción, es decir, con capacidad de movimiento, el tejido muscular cumple tres funciones importantes: proporciona los movimientos corporales, es responsable del mantenimiento de la postura y ayuda en la termorregulación, ya que son uno de los principales sistemas de generación de calor del cuerpo.
Las células musculares basan su capacidad contráctil en un sistema de citoesqueleto muy desarrollado y con una proteína contráctil de la familia de los filamentos intermedios asociada a este citoesqueleto denominada miosina.
Hay tres tipos fundamentales de tejido muscular, que son muy diferentes tanto en su morfología como en su función:
- Músculo liso.
- Músculo estriado esquelético.
- Músculo estriado cardiaco.
Músculo liso |
El músculo liso está formado por células de tamaño relativamente pequeño, con forma de huso y fibras de actina y miosina dispuestas longitudinalmente en el citoplasma (aunque sin una organización excesiva).
Es el músculo encargado de movimientos involuntarios (no realizados conscientemente), como por ejemplo los movimientos de contracción de los bronquios, venas y arterias, los movimientos peristálticos del tubo digestivo, los movimientos de contracción y dilatación de la pupila.
Se encarga de movimientos lentos, pero es muy resistente a la fatiga (puede trabajar durante horas sin descanso).
Músculo estriado cardiaco |
El músculo estriado cardiaco presentauna estriación transversal uniforme; esta es consecuencia de la estructura ordenada de filamentos de actina y miosina. Está formado por células relativamente pequeñas que presentan un núcleo en posición central. En sus extremos poseen unas ramificaciones, con las que contactan con otras células vecinas. En estas zonas de contacto la membrana está engrosada, ya que es una zona de comunicación entre células cuya función es provocar que la contracción de todas las células musculares esté coordinada.
Se trata de las células musculares que componen el corazón (de ahí la necesidad de coordinación).
Es un músculo que permite movimientos rápidos (el corazón puede llegar a latir más de doscientas veces en un minuto) y a la vez muy resistente a la fatiga (late sin descanso durante toda la vida).
El músculo estriado esquelético está formado por células cilíndricas de gran tamaño (pueden llegar a medir varios milímetros y poseer varias decenas de núcleos) que presentan una característica estriación transversal muy uniforme, consecuencia de la extrema ordenación de su citoesqueleto y en concreto de los tubos de actina y miosina.
Se denomina esquelético porque se encuentra en músculos anclados de alguna forma a un hueso. Se encarga de los movimientos voluntarios de nuestro cuerpo: movimientos de brazos, piernas, etc. Es decir, constituye los músculos voluminosos de nuestro cuerpo.
Músculo estriado esquelético |
Se encarga de movimientos muy rápidos y fuertes. Pero es poco resistente a la fatiga, tras una actividad de varios minutos, comienza a perder efectividad.
El sistema muscular constituye una parte muy importante de nuestro cuerpo: alrededor del 40% de nuestro peso.
Los grandes músculos esqueléticos se encuentran rodeados por una membrana conjuntiva denominada epimisio. El músculo se divide en haces, separados unos de otros por una membrana conjuntiva denominada perimisio. Y cada célula muscular está separada de las demás por una membrana conjuntiva muy fina denominada endomisio. Las tres membranas conjuntivas acaban confluyendo en el extremos del músculo y en la zona de unión aparecen fibras conjuntivas y elásticas, transformándose estas en el tendón del músculo.
Como hemos indicado, las fibras musculares esqueléticas presentan una serie de estriaciones transversales a intervalos constantes (le dan su nombre de músculo estriado). Corresponden a una distribución de los filamentos muy ordenada. Estos filamentos serán los encargados de facilitar y llevar a cabo la contracción muscular.
Bandeado del músculo estriado |
Existen bandas claras y oscuras alternas. Las bandas claras se denominan bandas I (de isótropas) y las bandas oscuras bandas A (de anisótropas). Las bandas claras I tienen, en su zona central, una banda de color oscuro que se denomina banda o disco Z. Y las bandas oscuras A tienen en su zona central una banda clara denominada banda H. Las bandas H tienen en su zona central una banda o línea más oscura denominada línea M.
Las bandas I son zonas donde solo hay filamentos de actina, que actúan como raíles o fibras fijadoras. El disco Z es la zona en la que se anclan estos filamentos de actina. Los filamentos móviles son los filamentos de miosina. Las zonas oscuras de la banda A corresponden a zonas donde se encuentran a la vez filamentos de actina y de miosina. La línea M es la zona de inserción de los filamentos de miosina. Y la banda H la zona en la que hay filamentos de miosina pero no hay filamentos de actina. Cuando el músculo se contrae, desaparece la banda H, ya que la miosina tira de la actina, acercando las dos partes de la banda y acortando el músculo.
¿Y cómo se contrae el músculo?
Placa motora |
El músculo se contrae como respuesta a un impulso nervioso que le llega por parte de las neuronas encargadas de ordenar el movimiento de los músculos y que se denominan neuronas motoras (o motoneuronas).
Cada neurona motora no estimula a una sola célula o fibra muscular, sino a un grupo de ellas. Al grupo de fibras estimuladas por una sola neurona se le denomina unidad motora.
En los músculos destinados a movimientos de fuerza, las unidades motoras son grandes, una sola neurona ordena el funcionamiento de muchas células musculares. De esta forma, una sola descarga provoca una fuerte contracción muscular. En cambio, los músculos que son requeridos para movimientos finos, precioso, poseen unidades motoras más pequeños. Por medio del ejercicio físico puede hacerse variar el tamaño de las unidades motoras. Por eso un violinista no puede dedicarse al boxeo: el entrenamiento de fuerza provocaría que el músculo perdiese precisión.
¿Cómo funciona la contracción muscular? Es un proceso complejo.
Cuando llega el impulso nervioso, los neurotransmisores que se descargan sobre la célula muscular provocan la apertura de canales de calcio, provocando la entrada de este ión dentro del citoplasma la célula desde el exterior; además, un retículo endoplásmico especial denominado presente en las células musculares, denominado retículo sarcoplásmico, acumula en su interior grandes cantidades de calcio, abriendo sus canales y permitiendo que el calcio salga del retículo al citoplasma cuando recibe el impulso de la neurona motora.
En situación de reposo, la actina y la miosina no pueden unirse, ya que las zonas de unión se encuentran bloqueadas por dos poretínas, una proteína fibrilar denominada tropomiosina y una proteína globular denominada troponina.
Al acumularse el calcio en la célula, el calcio se une a la troponina (concretamente a su subunidad conocida como troponina C). La troponina C actúa sobre la tropomiosina y la desplaza, dejando libre la zona de unión entre la miosina y la actina.
Esto provoca que la actina se una a la miosina y se desplace sobre ella: la actina actúa como el rail, la miosina provoca el movimiento, haciendo que los filamentos de actina se desplacen.
El movimiento de la actina sobre la miosina provoca que la fibra se contraiga. Este movimiento consume energía (en forma de una molécula de ATP, unida a la miosina, que se transforma en ADP). Cuando el impulso nervioso cesa, la célula retira el calcio, la tropomiosina y troponina recuperan su forma original, haciendo que la actina y la miosina pierdan su capacidad de desplazarse una sobre otra.
No hay comentarios:
Publicar un comentario