Mostrando entradas con la etiqueta Histología vegetal. Mostrar todas las entradas
Mostrando entradas con la etiqueta Histología vegetal. Mostrar todas las entradas

domingo, 21 de abril de 2019

Histología Vegetal: Vídeos

Para completar toda la información sobre histología vegetal, incluyo en esta entrada los dos vídeos con imágenes comentadas y detalladas.

Primer vídeo:


Segundo vídeo:


Se trata ve níveos donde analizo y comento imágenes similares (en ocasiones las mismas imágenes) que las que forman parte de las entradas de histología vegetal anteriores.

domingo, 10 de marzo de 2019

Histología Vegetal: Estructura de la Hoja

Las hojas son las estructuras vegetales encargadas de la producción de materia orgánica a través de los procesos fotosintéticos. Es decir, en las hojas se va a producir savia elaborada a partir de savia bruta y gracias a la incidencia de la luz solar.

En las hojas, por lo tanto, deben existir estructuras que promuevan, por un lado, la percepción de luz solar y la realización de la fotosíntesis. El principal tejido fotosintético en vegetales es el Parénquima. Y por otro lado, debe existir un sistema eficaz de intercambio de gases con el exterior, puesto que para realizar la fotosíntesis, la planta requiere captar dióxido de carbono del aire (para fijarlo mediante el ciclo de Calvin, en la fase oscura de la fotosíntesis) y liberando oxígeno en el proceso. Y cuando la fotosíntesis no se encuentra activa, en las hojas debe captarse oxígeno para llevar a cabo la respiración celular, liberándose dióxido de carbono.

Las hojas están recubiertas por una Epidermis, que actúa como capa protectora. Encontramos epidermis tanto en el haz como en el envés de la hoja, aunque ambos tejidos epidérmicos presentan ciertas diferencias. La más importante, en el envés de las hojas encontramos muchos más estomas, es decir, parejas de células especializadas en el intercambio de gases entre el interior y el exterior de las hojas.

Por debajo de la epidermis encontramos el Parénquima. Normalmente, en la zona del haz de las hojas el parénquima suele ser más denso, con mayor agrupamiento celular. Es frecuente, por ejemplo, encontrar un Parénquima en Empalizada.

En la zona del envés, en cambio, es más frecuente encontrar un parénquima con menor densidad celular, pues así se facilita la difusión de gases del exterior al interior. Podemos identificar en muchas hojas, por ejemplo, Parénquima Lagunar, con amplios huecos entre las células que permiten el flujo de gases.

En el interior de la hoja también encontraremos los Elementos Conductores, agrupados en haces conductores en los que aparecerá el Xilema, normalmente en la zona central del haz conductor y el Floema, en la zona periférica.

Los elementos conductores está, en ocasiones, rodeados o flanqueados por tejido endurecido, es decir, por Esclerénquima que le da consistencia a la hoja y a su nerviación.

En algunas zonas, bajo la epidermis, puede aparecer tejido endurecido, Colénquima, para dar consistencia a la hoja.



domingo, 17 de febrero de 2019

Histología Vegetal: Estructura del Tallo Secundario

Entendemos por tallo secundario como aquel tallo que presenta anillos de crecimiento, es decir, que pertenece a una zona de la planta que se mantiene durante más de un año, presentado crecimientos estacionales progresivos.

Así, cada año aparecerá una nueva estructura de crecimiento, un nuevo anillo que rodeará o se añadirá a los anillos anteriores. Estos anillos están formados esencialmente de elementos leñosos, mayormente células sin protoplasto vivo y con predominancia de elementos conductores xilemáticos, es decir, de conductores de savia elaborada.

Los elementos con protoplasto vivo tenderán a concentrarse en las zonas más periféricas o y en ocasiones, en zonas interiores del tallo constituyendo la el parénquima medular.

Rodeando el tallo secundario encontramos una capa de células muy endurecidas, normalmente cargadas de una sustancia química denominada suberina y sin protoplasto vivo. Se denomina Perdiermis. Este tejido, conocido genéricamente como Súber, es fabricado por un meristemo que se localiza justo por debajo del mismo y que se denomina Felógeno.

Bajo el felógeno suele aparecer un tejido parenquimático conocido como Córtex. Es, básicamente, un tejido de relleno que ocupa la periferia exterior del tallo, justo por debajo del súber y del meristemo.

Justo por debajo del córtex aparece el tejido conductor de la savia elaborada, es decir, el Floema. En muchas ocasiones no forma un tejido circular continuo, sino que se establece en estructuras piramidales, con columnas de tejido parenqumático separando las diferentes pirámides.

Por debajo del floema se distribuirá, en capas concéntricas, el Xilema. Entre el xilema y el floema aparece un tejido meristemático encargado de fabricar los tejidos conductores y que se denomina Cambium o Cambium Vascular.

Las células del cambium generan floema hacia la periferia y xilema hacia el interior. El xilema es fabricado a mayor velocidad y establece claramente periodos de crecimiento y de paro del crecimiento en aquellas plantas que tiene crecimientos estacionales.



Año a año, el cambium fabrica xilema hacia el interior, que conforma un tejido duro y que da consistencia al tallo. Y va empujando los tejidos vivos hacia el exterior, aumentando de esa forma el volumen total del tallo. Debemos pensar que todo el grueso interior del tallo, formado por anillos concéntricos de xilema, son vasos leñosos, constituidos por células sin protoplasto vivo.

En la zona más interior de algunos tallos encontramos el Parénquima Medular, un tejido parenquimático formado por células con protoplasto vivo.




domingo, 3 de febrero de 2019

Histología Vegetal: Estructura del Tallo Primaro

Entendemos por tallos primarios aquellos que no presentan anillos de crecimiento. Normalmente aparecen solo durante una temporada del año, perdiéndose la estructura durante las estaciones frías.

Es decir, es un tallo que no presenta crecimientos progresivos de año a año.

Recordemos que la principal función del tallo es sostener la planta, mantenerla erguida de forma que pueda recibir pertinentemente la radiación solar, mantener en alto las hojas y el sistema reproductor de la planta y conectar las raíces con el resto de órganos de la planta, fundamentalmente hojas y estructuras reproductoras.

O dicho de otro modo, transporta el agua y las sales minerales, conocida como savia bruta, desde la raíz hasta las hojas, donde se fabrica la savia elaborada. Y posteriormente distribuye la savia elaborada desde las hojas hasta el resto de órganos de la planta, alimentando las estructuras reproductoras y haciendo descender los nutrientes a las raíces.

En el tallo primario encontramos varias estructuras características.

Por un lado, se encuentra rodeado por un tejido epidérmico que lo separa del exterior. En los tallos primarios, normalmente, no hay superficie endurecida rodeando el tallo.

Por debajo de la epidermis, hay una capa de tejido endurecido, de sostén, es decir, de esclerénquima formando una especie de anillo endurecido que aporta rigidez.

La parte central del tallo está constituido, principalmente, de tejido parenquimático.

Inmiscuido dentro del tejido parenquimático encontramos los elementos conductores en forma de subunidades, de morfología redondeada. En cada una de estas subunidades conductoras encontramos los dos tipos de tejidos: xilema que conduciría la savia bruta de la raíz a las hojas, y floema que transportaría la savia elaborada de las hojas a la raíz. Entre los elementos conductores, aparecen elementos de tejido de sostén, fundamentalmente esclerénquima. El esclerénquima está constituido por células endurecidas, que hacen de soporte y son las responsables de que los tallos sean elementos rígidos.





lunes, 14 de enero de 2019

Histología Vegetal: Estructura de la Raíz

La raíz de los vegetales es la estructura encargada de:

  • Sostener la planta, anclándola al suelo y permitiendo su crecimiento en altura.
  • Obtener los nutrientes básicos que necesita para realizar su actividad metabólica básica, es decir, agua y sales minerales.
En la raíz de la planta encontraremos pelos radiculares que se encargarán de obtener del suelo agua y sales minerales. Estas serán transportadas por los tejidos conductores a las zonas de la planta donde se realizará la fotosíntesis, es decir, a las hojas.

Recordemos que la mezcla de agua y sales minerales capturadas del suelo constituyen un líquido que denominaremos savia bruta. Esta será transportada por medio de tejidos conductores denominados vasos leñosos o xilema.

En las hojas y mediante el proceso fotosintético, la savia bruta es transformada en savia elaborada. Es decir, el agua y sales minerales se convierten en moléculas orgánicas de mayor complejidad (se trata de un proceso anabólico), entre las que destacan los azúcares y aminoácidos.

Las moléculas orgánicas son esenciales para el desarrollo y crecimiento de la planta. Por ese motivo, deben ser transportadas a toda la planta, incluida la raíz.

La savia elaborada es distribuida por toda la planta mediante los vasos liberianos, que forman parte destejido conductor denominado floema.

En las raíces, los tejidos conductores suelen encontrarse en la zona central de la misma. Se separan del resto de la raíz por una capa de tejido de recubrimiento interno, es decir, mediante una capa de endodermis.

El cuerpo de la raíz está constituido por tejido parenquimático, carente de cloroplastos (al encontrarse bajo tierra, no realiza fotosíntesis). Este tejido es usado, ocasionalmente, para acumular sustancias de reserva, como almidón.

La raíz está separada del exterior mediante una capa de células denominada epidermis. En esta capa celular encontramos células epidérmicas modificadas que constituirán los pelos radiculares.


La función de estos pelos no es la absorción, tanto en cuanto toda la superficie de la raíz tiene capacidad de absorber, sino localizar agua y sales minerales y condicionar así el crecimiento de extensiones.


domingo, 14 de diciembre de 2014

Histología Vegetal: Tejidos Secretores.

Características generales.
Incienso. De Mauro Raffaelli

Existen tres tipos de estructuras secretoras fundamentales, los conductos resiníferos, los conductos gominíferos y una variedad de los mismos denominados venas de Kino y los conductos laticíferos.

Se trata de estructuras secretoras internas, no epidérmicas. Se trata de un sistema secretor mucho más importante que la epidérmica. Algunos tipos de tejidos secretores y sobre todo los conductos laticíferos se encuentran relacionados con el floema.

Conductos resiníferos.

Fabrican compuestos derivados del fenol. Son importantes en procesos de cicatrización. Hay una zona de una sola capa de células, con protoplasto vivo y pared primaria, constituida por células epiteliales y una segunda capa de células sin protoplasto vivo, que las rodean y las dirigen, denominadas células de la vaina.
 
Conductos resiníferos.
Resina de pino. De Kelly


Conductos gomíferos.

Se producen por procesos lisogénicos. Se rompen unas células parenquimatosas, qudando un espacio intercelular. El parénquima varía, se modifica, evoluciona. No tine porque ser un conducto, ni tener morfología alargada. Se trata más bien de establecimiento de lagunas. Fabrican, sobre todo, productos mucilaginosos.
 
Conductos gomíferos.
Venas de Kino.

Su estructura es similar a los conductos gominíferos. Pero en este caso producen polifenoles, aceites esenciales y ácidos grasos. Se trata de estructuras que se forman en etapas tempranas del desarrollo del vegetal. Son especialmente abundantes en algunos vegetales concretos, como en los eucaliptos.

Conductos lactíferos.

Son conductos exclusivamente celulares. El almacenamiento y transporte de ustancias son intracelulares. Podmeos distinguir dos tipos, los no articulados y los articulados. Que es equivalente a decir unicelulares y pluricelulares respectivametne.

Los no articulados son más sencillos. Podemos diferenciar dos tipos, los lisos y los ramificados. Los lisos son alargados y solo vierten su contenido en situaciones críticas, cuadno la célula muere. Los ramificados son similares, constitiuidos por una sola célula, pero en este caso ramificada. En su desarrollo, le crecen prolongaciones. En cualquier caso, se trata de células con protoplasto vivo y una vacuola muy desarrollada.
 
Tipos de conductos lactíferos.
En las articuladas tenemos filas de células. Constituyen una especie de vía. En las zonas de contacto entre las células aparecen gran cantidad de plasmodesmos y punteaduras primarias. Al igual que en el caso anterior, hay conductos lisos y ramificados.

Se considera que son elementos en general encargados de fabricar productos tóxicos, defensivos. Pero hay muchos tipos y algunos poseen otras funciones, como excreción o reserva e sustancias.




sábado, 8 de noviembre de 2014

Tejidos Vegetales: Epidermis.

Características generales.
 
Cubierta vegetal: epidermis y tricomas.
(por Louisa Howard)
Es un tejido de revestimiento, siempre en la superficie de todos los tejidos. Es el tejido de revestimiento primario, aparece solo en las zonas donde hay un revestimiento primordial. En el revestimiento secundario está lel tejido peridérmico, que es totalmente distinto.

El tejido epidérmico es complejo, no todas las células son idénticas. Aparecen por un lado células epidérmicas normales, que consitituyen alrededor del 90% del total de las células. Y células epidérmicas especiales o específicas, entre las que destacan las células oclusivas de los estomas y los tricomas o pelos epidérmicos.

Células epidérmicas normales.

Las células epidérmicas normales tienen protoplasma vivo y núcleo, paredes primarias, aunque estas no son uniformes, pudiendo encontrar diferencias entre las que dan al exterior y las interiores. La parte de la pared de las células que da al exterior aparece engrosada y con cutícula.
 
Epidermis.
Se trata de un compuesto graso, muy hidrofóbico y que se encarga de defender a la planta frente a la pérdida de agua. Se trata por ello de un compuesto impermeable. En estas células, un 80% o 90% de su volumen puede estar ocupado por la vacuola. La cutícula está copuesto por cutina, mayoritariamente y por ceras. Siempre mira hacia el exterior del tejido.

En las células epidérmicas se pueden distinguir perfetament qué parte de la pared es de cada célula en las zonas de contacto, donde se encuentran unidas. Sin embargo, con la cutícula esto no ocurre, se trata de una capa continua.

Entre la cutina y la célula existe una membrana denominada capa cuticular constituida por cutícula y celulosa. Esta membrana es parcialmente impermeable. Al conjunto cutícula – capa cuticular se le denomina membrana cuticular.

El grosor de la cutícula es muy variable. En semillas, por ejemplo, pueden ser muy gruesa. En cambio, en las hojas, esta capa es muy fina.

Estomas.

Los estomas están íntimamente relacionadas con el intercambio gaseoso. Gracias a ellos se puede regular la permeabiliad de la capa epidérmica. Están constituidos por células arriñonadas, que forman un agujero cuyo diámetro puede variar. Se des denomina células estomáticas.

Llamaremos estoma al conjunto del agujero y las células oclusivas. Al agujero que forman los estomas se le denomina ostiolo.
 
Esquema de un estoma
Las células oclusivas poseen paredes primarias y protoplasto vivo. Su pared primaria posee un engrosamiento irregular. Hay zonas susceptibles de sufrir variaciones en su volumen. Las células pueden experimentar cambios en su presión de turgencia gracias a su capacidad de variar su presión osmótica. Lo logran despolimerizando moléculas de almidón, ya que el almidón en si mismo no afecta a la presión osmótica, pero la glucosa sí, por lo que al despolimerizarse el almidón la presión osmótica del interior aumenta considerablemente.
 
Estoma en hoja de tomate. Por Photohound
Cuando la presión de turgencia aumenta, esta no deforma la pared de forma uniforme. La parte central es más gruesa y no camiba de forma, sin embargo se dilata la zona de los extremos. De esta forma, se abre un hueco en la zona central (el ostiolo), por donde se pueden realizar los intercambios de gases.
 
Funcionamiento de los estomas.
Las células del estoma tienen cloroplastos bien desarrollados. Deben aportarle la energía necesaria para polimerizar el almidón cuando sea necesario. Debemos tener en cuenta que los aumentos de presión de turgencia pueden ser muy importantes, llegando a triplicar o cuatriplicar la presión interna, que puede pasar de unas 5 atmósferas a más de 20 atmósferas.
 
Estomas con cavidad subestomática. Por Lord of Konrad
Los estomas presentan una serie de células epidérmicas contiguas algo modificadas. Se les llama células anejas o anexas. Presentan variaciones en cuanto a su tamaño, longitud y características histológicas, aunque son parecidas a las epidérmicas. Presentan plasmodesmos en su pared que los comunica con los estomas. Y según su morfología, nos sirven para clasificar los estomas en diferentes tipos.

En dicotiledóneas podemos encontrar cuatro grandes grupos de estomas en función de los tipos de células anexas que presentan.

Por un lado tenemos los estomas anomocíticos, en los que no existen células anexas como tales, sino que aparecen ligados a células epidérmicas normales.

Por otro lado tenemos estomas anisocíticos, cuando presentan tres células anexas, dos pequeñas y diferenciadas y una célula anexa grande.

El tercer tipo de estoma es el diacítico, que presenta dos células anexas perpendiculares al eje oclusivo de las células estomáticas.

Y por último están los estomas de tipo paracítico, que presentan dos células anexas paralelas al eje oclusivo de las células estomáticas.
 
Tipos de estomas.
En monocotiledóneas hay una variabilidad aun mayor.

El estoma no está solo constituido por las células alineadas superficiales, bajo el estoma hay una cavidad aérea, rodeada de células de parénquima. A esa zona aerolada se la denomina cavidad subestomática y supone un reservorio de aire.
 
Esquema de la cavidad subestomática.
Tricomas.

Tricoma de Cucurbita maxima. De (biophotos)
Los tricomas son células epidérmicas modificadas con función variable. Su morfología puede variar, apareciendo en ocasiones alargadas, en otras isodiamétricas.

Desde el punto de vista funcional, pueden estar destinadas a la protección, secreción (glandular) o absorción, siendo estas últimas muy importantes en las raíces por constituir los pelos radicales.

Los tricomas pueden, además, ser unicelulares o pluricelulares.

Un ejemplo de tricoma encargado de la protección son los pelos urticantes de las ortigas.
 
Esquema de tricoma de ortiga.
Se trata de un tricoma pluricelular, con una zona dura, en forma de trompa y recubierta de sílice. Al romperse esa zona, el sílice actuará de zona punzante, puede clavarse. Además, debido al fenómeno de turgencia, al romperse la parte superior de la célula engrosada con silicio el protoplasto sale a presión hacia el exterior, actuando como inyector.

Otro tipo de tricomas son los glandulares. Sintetizan compuestos que son segregados al exterior. Su principal función suele ser atraer a los insectos. Los tricomas glandulares más desarrollados son pluricelulares y presentan forma de botella. Tienen una vida corta, al mirar al exterior segregan los productos químicos almacenados mediante un proceso de lisis.
 
Tricomas glandulares.
Un tercer tipo de tricomas son los pelos radicales. En este caso, se trata de tricomas unicelulares cuya función es la absorción. Se encuentran en la raíz de la planta. Se desarrollan a partir de una célula epidérmica normal, pero ligeramente más pequeña. Comienza a aparecer una prolongación. El núcleo se desplaza hacia la prolongación, se sitúa en el extremo por el que se produce el alargamiento.
 
Formación de pelos radicales.
Se pensaba que la función de estos pelos era aumentar la superficie de contacto. Sin embargo, de ser así en condiciones ideales de humedad y nutrientes, no deberían desasrrollarse. Sin embargo se observan en la misma proporción o cantidad. Por eso se piensa que su función es localizar o encontrar zonas con más agua.


Las espinas de las plantas, en general, no son tricomas, ya que su interior no es epidérmico, tratándose de un tejido complejo (los tricomas, por definición, deben ser exclusivamente epidérmicos).

sábado, 18 de octubre de 2014

Histología Vegetal: Floema (Líber)

Características generales.

Tejido conductor (rojo intenso). Por Micropix
Al igual que el xilema, el floema es un tejido complejo en el que aparece esclerénquima, parénquima no especializado y elementos conductores. Dentro de los elementos conductores diferenciaremos dos grandes grupos: células cribosas y elementos cribosos. Además, aparecerán un serie de células de parénquima especializado, denominadas células anexas y células albuminales y que se relacionarán con los elementos conductores.

El esclerénquima y parénquima no especializado del floema es idéntico al ya analizado, no presenta ninguna característica especial ni diferencial.

Células cribosas.

Se trata de células con protoplasto vivo, aunque en su estado adulto carecen de núcleo, presentando un metabolismo extremadamente reducido. Presentan unas especializaciones de la pared celular denominadas cribas. Son plasmodesmos muy desarrollados y muy especializados, con canales más anchos y presentan un componente adicional. Entre la pared y el canal, hay un anillo rico en un polisacárido denominado calosa (se trata de glucosas unidas por enlaces β-1,3).
 
Células Cribosas
El anillo de calosa crece todo el tiempo y llega un momento en el que cierra el plasmodesmo. Entonces se le pasa a denominar callo. Se trata de un sistema de defensa, se produce cuando el tejido conductor deja de ser funcional, asegurándonos de esta forma de que nada puede pasar de una célula a otra o a un tejido que no se está usando.

Pero en general, estas células no tienen tendencia a gruparse.         

Puede suceder que, en estas células las cribas aparezcan en una zona de pared determinada y entonces hablaremos de área cribosa. O puede pasar que las cribas se acumulen en una zona concreta de la célula y entonces hablamos de placas cribosas.
 
Áreas y placas cribosas
Las áreas cribosas aparecen o son características de grandes células cribosas, de morfología alargada, con cribas en toda su superficie y distribuidas de manera uniforme. Se asocian las células unas al lado de las otras generando elementos conductores.

Los elementos cribosos, en cambio, son más anchos y se organizan formando pilas, unos sobre otros, de forma que constituyen vasos cribosos. Tienen dos zonas my distintas, una pared lateral sin apenas cribas y una zona, la placa cribosa, donde se acumulan todas las cribas. Estas placas son de gran tamaño.
 
Células y elementos cribosos
Tanto las células cribosas como los elementos cribosos carecen de núcleo. Conservan un retículo endoplásmico bastante desarrollado, aparato de Golgi y sobre todo mitocondrias y plastidios.

El hecho de carecer de núcleo implica unmetabolismo bajo. Este problema se soluciona gracias a otros grupos celulares. Existe una serie de células alargadas, nucleadas y con protoplasma vivo que se sitúan adyacentes a las células cribosas y establecen plasmodesmos con ellas. Se denominan células anexas.
 
Células anexas
Su origen es común, es decir, a partir del meristemo se forman células de pequeño tamaño, destinadas a dar lugar a las células anexas, y células de gran tamaño destinadas a dar lugar a las cribosas.

Hay una proteína glicosilada que se une a las zonas apicales de los elementos cribosos y se llaman proteínas p. Forman acúmulos en las cercanías de las capas cribosas. Parece que forma un verdadero tapón, denominado tapón mucilaginoso. Es reversible y ás rápido que los depósitos de carbohidrato. Pero no está claro si este tapón impide o no impide el interambio. Al menos, se sabe que disminuye sensiblemente la intensidad del tráfico a través del conducto.

Floema. por Rasbak
Las células albuminosas son similares a las anexos, pero se unen a las células cribosas (en lugar de hacerlo a los elementos cribosos que constituyen los vasos). Tienen grandes cantidades de albúmina, aunque no está clara su función. Son más grandes que las anexas y presentan grandes cantidades de plasmodesmos.

Las células cribosas deben tener mitocondrias, metabolizando productos químicos procedentes de las células anexas y de las células albuminosas.

En el floema, como tejido, podemos distinguir dos grandes elementos. Por una parte, tenemos el floema primario, que aparece en el periodo de crecimiento primario, es decir, crecimiento en longitud de la planta. Dentro del floema primaria encontramos el protofloema y el metafloema.

Floema (flecha) por Clematis
Por otro lado, tenemos el floema secundario, que aparece en los periodos en los que el vegetal incrementa su crecimiento en anchura.
Hay una gran analogía entre el xilema y el floema. De hecho, suelen provenir del mismo meristemo (recordamos, procambium y cambium).

Estructura tridimensional del xilema y el floema.

    Distribución espacial de los tejidos.

Tanto el xilema como el floema se pueden distribuir conforme a dos sistemas básicos, el axial (o longitudinal) y el radial (u horizontal).

El sistema axial está constituido por elementos conductores formados por células alargadas, paralelas al eje principal de la planta formando columnas. El radial está constituido por células de parénquima, formando filas que se organizan en un plano horizontal, poniendo en contacto los sistemas paralelos independientes entre sí (es decir, promueven la interacción de elementos perpendiculares).

Corte longitudinal y tranversal de sistema axial.
En el caso del floema, el eje radial está constituido por células del parénquima normal. Las células anexas y albuminosas aparecen en el parénquima axial.



El xilema y el floema se encuentran siempre adyacentes. Parten de un mismo meristemo, y se diferenciará hacia un lado como células del xilema y hacia otro como células del floema.

Xilema y floema adyacentes